If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+4n-76=0
a = 4; b = 4; c = -76;
Δ = b2-4ac
Δ = 42-4·4·(-76)
Δ = 1232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1232}=\sqrt{16*77}=\sqrt{16}*\sqrt{77}=4\sqrt{77}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{77}}{2*4}=\frac{-4-4\sqrt{77}}{8} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{77}}{2*4}=\frac{-4+4\sqrt{77}}{8} $
| 5(3x-4)=4(x-5)+5 | | 2.50x=1200+1.10x | | (3x+1)+(0.5+3)=18 | | O.5t-3t+5=0 | | 3(k-4)-2(k+1)-13=-18 | | 0.2x+2.6=0.8x-0.4 | | -3x+8=-10x-13 | | |x-6|=x-20 | | 0.125(16y+8)-17=1.75(8y-16) | | t=3+6/11 | | -9(2t-2)=4(t-15) | | 4-0.286w=18 | | 3|3x-+2|-2x=x+3 | | 9y-6-5y=5y-5 | | -20/9+-12/9n=-16/9 | | 1.2=-3n | | 7x-11+15x=51 | | 4x+5x=8x+10 | | 2(9/2)=5s/2-s/4 | | x-(-14)=30 | | r+16=-13 | | 7x-5-3=-15 | | 3x+1=1/2x | | 35=10x/2 | | 8(6d+9)=-16 | | -24=-u/4 | | 2y-3(5-y)=60 | | -2/7w=18 | | 4/7m-1/7=7/56 | | -20p+15p=-20 | | 2x^2-12=24 | | 9-m/4=20 |